NW Conejos County FPD
Community Wildfire Protection Plan

Land Stewardship Associates, LLC.
April, 2009
Community Wildfire Protection Plan
NW Conejos County FPD

Table of Contents:
PREFACE.. 2
COMMUNITY IDENTIFICATION AND DESCRIPTION.. 3
 Table 1: Wildland Urban Interface Communities in NW Conejos County FPD6
COMMUNITY ASSESSMENT ... 7
 Fuel Hazards ... 7
 Table 2: NW Conejos County FPD Fire Behavior Predictions.................... 12
 Community Values at Risk ... 14
 Other Values at Risk (Bosque condition and health) 16
 Local Preparedness and Protection Capability .. 17
 Table 4 Fire Equipment Available and Additional Needs 17
COMMUNITY MITIGATION PLAN... 19
 Commendations.. 19
 Wildfire Prevention and Fire Loss Mitigation .. 20
 Ditch Burning Coordination ... 20
 Survivable Space ... 20
 Fuel Hazard Reduction ... 21
 Improved Protection Capability .. 22
 Communications ... 22
 County Wildfire Standards for Sub-divisions ... 22
 Strategic Recommendations ... 23
 Shared Coordinator ... 23
 State Tax Incentives for Wildfire Hazard Mitigation 24
 Table 5: Implementation Items, Priorities & Costs 25
 Implementation .. 26
 Monitoring.. 26
 Table 6: Action Plan for Completing the NW Conejos County FPD CWPP ... 27
APPENDICES.. 28
 Appendix A: Maps ... 28
 Appendix B: Fuel Model Descriptions ... 28
 Appendix C: Fuel Hazard Reduction Guidelines ... 28
 Appendix D: Evacuation Planning Guidelines ... 28
 Appendix F: Fuelbreak Guidelines for Forested Sub-divisions & Communities ... 28
 Appendix G: Road & Driveway Specifications for Emergency Access 28
 Appendix H: Planning and Zoning Guide -Archuleta County 28
 Appendix I: NW Conejos County FPD Triage ... 28
 Appendix J: Sub-division Hazard Evaluation Form 28
 Appendix K: Definition of Terms ... 28

NWCFPD CWPP
LSA
April 2009
PREFACE

A Community Wildfire Protection Plan (CWPP) is a local wildfire protection plan that can take a variety of forms, based on the needs of the community. The CWPP may address issues such as wildfire response, hazard mitigation, community preparedness, or structure protection – or all of the above.

The process of developing a CWPP can help a community clarify and refine its priorities for protection of life, property and critical infrastructure in the wildland-urban interface. It also can lead community members through valuable discussions regarding management options and implications for the surrounding watershed.

CWPPs also improve a community’s ability to compete for grants to fund hazard mitigation projects prevention and preparedness education of residents in the community.

The wildland urban interface (WUI) is another term found throughout this document. It can be simply described as the geographical area where structures and other human development meet or intermingle with wildland or vegetative fuels. For the purposes of community wildfire protection planning a more specific definition is used. The Healthy Forest Restoration Act defines wildland-urban interface as:

a.) an area extending ½ mile from the boundary of an at risk community.

b.) an area within 1.5 miles of the boundary of an at risk community, including any land that;

1. has a sustained steep slope that creates the potential for wildfire behavior endangering the at risk community,
2. has a geographic feature that aids in creating an effective fire break, such as a road or ridge top,

further defined as:

- an area that is adjacent to an evacuation route for an at risk community that requires hazardous fuels reduction to provide safer evacuation from the at risk community.
COMMUNITY IDENTIFICATION AND DESCRIPTION

Conejos County is located in the San Luis Valley in south central Colorado adjacent to the New Mexico State line. The entire northwest part of Conejos County is National Forest, State land, and BLM and is not within a designated Conejos County fire protection district (FPD). The NW Conejos County FPD (NWCC) Community Wildfire Protection Plan covers the north central portion of Conejos County. It covers an area of approximately 162 square miles or 103,547 acres and ranges in elevation from 7,600 feet on the east side to over 8,200 feet near the west boundary. The western FPD boundary line crosses the Alamosa River about a mile east of the BLM boundary and about four miles east of the Rio Grande National Forest boundary. The east boundary of the FPD runs north and south approximately 1-2 miles east of US Highway 285. The NW Conejos County Fire Protection District (NWCCFPD) provides both structure and wildland fire protection to north central Conejos County and small portions of Alamosa and Rio Grande counties.

There are three small towns within the NW Conejos County FPD. They are La Jara, Capulin and Romeo. Two, La Jara and Romeo, are along US Highway 285 and Capulin is a few miles west on State Highway 15. US 285 is the principle north and south travel route within the FPD and State Highway 15 is the principle east and west travel route. State Highway 371 is located approximately 4-5 miles west of US 285 is also a primary travel-way. There is a grid of numerous well-maintained county roads that follow some of the section lines throughout the FPD.

There is one sub-division within the NW Conejos FPD and two sub-divisions located in the foothills west of the NW Conejos FPD. None of the three sub-divisions have been developed and do not yet show any signs of being developed. All three of these sub-divisions are discussed within this CWPP because they are potential communities and the NW Conejos FPD is the organization that would protect them. They are listed in Table 1.

NW Conejos FPD, for the most part, involves the lower elevations of the county and the landscapes are dominated by agricultural developments. Most developments are comprised of center pivot irrigated land where potatoes, grains and hay are raised. The undeveloped areas have little or no interface with forested vegetation. While most of the NWCCFPD may appear to have a relatively benign wildfire hazard chico, grass and some cured agricultural crops can burn with high rates of spread and worrisome intensity.

The primary wildland fire hazard is vegetation along the natural drainages and irrigation ditches and the Alamosa River. Traditionally land owners clean the irrigation ditches annually by burning the accumulated weeds and grass from the previous year in the spring before the next irrigation season. Typically the area experiences strong westerly winds in the spring and often the ditch-cleaning fires
escape and ignite adjacent fuels and sometimes nearby structures. Consequently this spring ditch burning season is one of the most hazardous for escaped wildfires.

The higher mountainous elevations outside and west of the NW Conejos FPD transition to ponderosa pine/Douglas-fir/aspen montane and Engelmann spruce forests. Ponderosa pine/Douglas-fir and spruce forests are generally dense enough to sustain a substantial crown fire resulting in a high fire risk. Even though most of the mountainous areas west of NW Conejos FPD are within the Rio Grande National Forest they are relevant because they include numerous parcels of undeveloped private lands. If community developments occur in this area the property owners are most likely going to look toward the NW Conejos FPD for fire protection.

Within the Northwest Conejos County FPD there are a few small parcels of public lands managed by the Bureau of Land Management and Colorado State Land Board. This means that the majority of wildfire hazard mitigation opportunities and responsibilities fall on private landowners.
NW Conejos County FPD has its’ main station located in LaJara with additional stations in Capulin, Carmel, and Romeo. Mutual aid from other Fire Districts such as Alamosa, Rio Grande County and the other Conejos County FPDs is responsive but some times takes considerable time to arrive on scene.

The initial CWPP Core Team meeting was held on October 7, 2008. Participants included members of the NW Conejos County FPD, NE Conejos County FPD, South Conejos County FPD, Central Conejos County FPD, Office of Emergency Management, US Forest Service, BLM, and Land Stewardship Associates, LLC.

The Core Team reviewed the overall wildland fire protection situation in Conejos County and discussed issues, concerns and opportunities. WUI boundaries were delineated on a map. Station wildland resource inventories were discussed.

Table 1: Wildland Urban Interface Communities in NW Conejos County FPD

<table>
<thead>
<tr>
<th>Sub-division Names</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alamosa River Estates (undeveloped)</td>
<td>263</td>
</tr>
<tr>
<td>LaJara Creek Acres (very limited development and appears to be unoccupied).</td>
<td>829</td>
</tr>
<tr>
<td>Total Acres</td>
<td>1,092</td>
</tr>
<tr>
<td>Blacktail Valley sub-division (undeveloped with no WUI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designated area is over 1,200 acres</td>
</tr>
</tbody>
</table>
COMMUNITY ASSESSMENT

The overall risk within NW Conejos County FPD from wildland fire varies from high to low depending upon a wide variety of factors and is limited to locations where there is fuel continuity in close proximity to developed areas. This section will discuss the facets considered that led to the overall ratings.

Fuel Hazards

Grass and shrub types intermingled with cropland and narrow riparian stringers are found throughout the NW Conejos County FPD. The one FPD WUI which is affiliated with the undeveloped Alamosa River Estates is primarily low fire hazard except for where it crosses the heavy cottonwood riparian fuels along the Alamosa River. Adjacent to the communities, La Jara, Capulin, and Romeo, the fuel conditions reflect urban/rural interface and the fuel hazards are spotty and small-sized.

With regard to the two undeveloped sub-divisions in the foothills west of the NW Conejos County FPD, La Jara Creek Acres is located within a grassland/shrubland mix where fuels are light and spotty; the other, Blacktail Valley Sub-division (in the area depicted on the right) is at a higher elevation and includes grassland with scattered pinon/juniper.

Foothills grass and shrub fuels loading within the NW Conejos County FPD are highly variable ranging from good strong fuel models 1 & 2 to sparse vegetation with considerable bare ground exposed (fuel model 101). Irrigated agricultural land also covers substantial area. The riparian zones vary between fuel models 8 and 9 depending on the time of year and condition of the fuels. Fires in the denser grass, shrub types and dry riparian zones can be very difficult to control on the typical dry, windy afternoon common in the San Luis Valley in the spring and fall. See Appendix B for a full discussion of Fuel Models.

Blacktail Valley Sub-division is a sub-division located 4-5 miles west of the NW FPD boundary. It is accessed via an unimproved road and it has not been developed. The primary wildland fuel is pinon-juniper and sagebrush. A WUI has not been designated. Until there is interest in actual development no fire prevention or protection actions are recommended.
The following maps showing NW Conejos county FPD Wildfire Hazards and Fuel Models indicate the two WUIs have a fuel hazard assessment of low to high.
NW Conejos County FPD Sub-divisions Map
(See SLV GIS/GPS website for these maps.)
Fire Hazard NW Conejos County FPD

Legend
- Fire Protection Districts
- Municipalities
- Fire Hazard (based on vegetation, slope and aspect)
 - Low
 - Moderate
 - High
Anderson Fuel Model, NW Conejos County FPD Map
Risk of Ignition and Wildfire Occurrence

Wildland fires have burned throughout the fire protection district ever since lightning and dry biomass has been present on the landscape. Most of the land area within the NW Conejos County FPD has, over the past 150 years, been developed for agriculture. The natural wildland fuels and fuel patterns have been displaced or changed by the planting, cultivating and production of crops and the grazing of domestic livestock. Obviously, wildfire hazard risks are tied more to traditional agriculture practices involving prescribed burning coupled with dry and windy weather and the continuity of fuel hazards. Also, livestock grazing is better managed today leaving more standing grass fuel than what occurred 50 or more years ago. In many cases livestock grazing is not occurring near home sites compared to 50 years ago where grazing everywhere was pretty intense.

Low fuel moistures and relative humidity are common in the area, as are periods of high winds. Conejos County is known to be a “high wind” area particularly in the spring. When dry, windy conditions coincide, the stage is set for large, troublesome wildfires. Human population is scattered throughout the FPD area. Fires originating in or near residences and communities are the most immediate concern but fires starting in outlying areas can have profound effects upon a residence or a community when driven by the dry spring wind.

Areas classified as high to moderate fuel loading are the most worrisome. Table 2 provides fire behavior predictions for several fuel models and representative weather conditions.

Table 2: NW Conejos County FPD Fire Behavior Predictions

<table>
<thead>
<tr>
<th>FUEL MODEL</th>
<th>RATE of SPREAD (ft/hr)</th>
<th>FLAME LENGTH (Feet)</th>
<th>SIZE @ 1 HOUR (Acres)</th>
<th>PERIMETER @ 1 HR. (Miles)</th>
<th>SPOTTING DISTANCE (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1,069</td>
<td>2</td>
<td>11</td>
<td>0.51</td>
<td>0.06</td>
</tr>
<tr>
<td>1</td>
<td>8,910</td>
<td>5</td>
<td>624</td>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>1,947</td>
<td>6</td>
<td>30</td>
<td>1.74</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>2,818</td>
<td>7</td>
<td>62</td>
<td>1.29</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>172</td>
<td>1</td>
<td>0.2</td>
<td>0.08</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>1,254</td>
<td>4</td>
<td>10</td>
<td>0.54</td>
<td>0.6</td>
</tr>
<tr>
<td>6/9</td>
<td>1,835</td>
<td>7</td>
<td>26</td>
<td>0.84</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Note: Flame lengths shaded in orange exceed the 4 foot hand crew control threshold.
In fuel model 1, grass is the primary fire carrier. Fuel model 2 is composed of a mix of grass and shrub wherein the shrubs add fuel bed depth and fire intensity. Tall, dense sagebrush is fuel model 6. Fuel Model 8 depicts slow-burning ground fires with low flame lengths such as in the hardwood riparian areas. Fuel model 8 fires encounter an occasional “jackpot” or heavy fuel concentration that can flare up. Only under severe weather conditions involving high temperatures and low humidity’s, and high winds do the fuels pose high hazards. Fuel Model 9 fires run through the surface litter faster than model 8 and have longer flame lengths. Concentrations of dead-down woody material will contribute to possible torching out of trees, spotting and crowning. Pure stands of cottonwood litter in the fall represent fuel model 9. In the fall, after the associated grass and forbs have cured, this fuel will burn more intensely and is temporarily more of a threat. The combination of fuel models 6 & 9 best represents the fire characteristics manifested by fires in the vegetative mosaics found in the pine/sage transition zone.
Community Values at Risk

Values – There are three traditional communities, and one undeveloped sub-division within the NW Conejos County FPD. In addition there are two undeveloped sub-divisions in the foothills west of the NW Conejos County FPD. Table 3 gives a summary of the community and sub-division wildfire hazard evaluations. Most have light to moderate fuels nearby and around them.

The towns of La Jara and Romeo have a population of 840 and 370 respectively, with the typical small town service businesses and residential areas. The community of Capulin has a population of less than 200. Around the outside edge of the towns is a “rural/urban interface” involving cropland and livestock pasture located adjacent to the residential area that is intermingled with small patches of grass and shrub fuels and artificially created concentrations of debris and leftover building materials and equipment being stored within or adjacent to vegetation. Fuel loads between home sites is light to medium, and while some homes need maintenance of their defensible space, most sites have adequate defensible space. While most structures have combustible sidings and decks, most roofs are primarily Class B rated (composition). Water re-supply is readily available within minutes from the town hydrant systems.

Access – Home sites are easily accessed by the paved, two-way, roads with grades of less than 5%. Access to individual structures is normally paved or gravel roads with adequate turnarounds.

La Jara, Capulin and Romeo do not have a significant wildfire–urban interface problem except possibly during high wind days when the grass fuels are abundant and they have cured. The only trees are ornamental and/or shade trees around the homes and structures. If the residents maintain their defensible space, mow around their buildings, and dispose of their backyard debris, their residence will remain very defensible.
Table 3: Community and Sub-division Wildfire Hazard

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Jara</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romeo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alamosa River Estates (undeveloped)</td>
<td>La Jara Creek Acres (undeveloped)</td>
<td>Blacktail Valley sub-division (undeveloped)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The sparsely populated areas throughout the NW Conejos County FPD have low to moderate wildfire hazard. While the structure density rate does not justify designation as Wildland Urban Interface; it is still important that all structures have survivable space to protect them from the inevitable wildfire.

The most significant wildfire hazard in the NW Conejos County FPD is from the traditional spring ditch burning that is often times taken out of control by high spring winds. It is not unusual for farm and ranch buildings to be damaged or threatened by out of control ditch fires.

Access – The primary and secondary road access within the NW Conejos County FPD is good. Road access within the various neighborhoods is much less predictable. Roads to and within sub-division areas are often narrow and sometimes steep. Driveways, turnarounds and internal access roads have not yet been developed. The access road into a part of La Jara Creek Acres is gated and locked.

Risk – Around the towns of La Jara and Romeo the fire risk involves patches of grass and shrub fuels close to structures or debris piles.

In the sub-divisions the only structures observed were less than a dozen small abandoned homes in La Jara Creek Acres and one with junk car business on the NW corner of Alamosa River Estates. In La Jara Creek Acres survivable space is lacking around most of the structures. In Alamosa River Estates the natural fuel is very light (fuel model 101) and risk is low.

Evacuation – Evacuation planning is currently not needed in any of the towns or sub-divisions. However, if any of the sub-division are developed evacuation planning should be an integral part of their design. Appendix D provides guidelines for developing an evacuation plan.
Other Values at Risk (*Bosque condition and health*)

Cottonwood/willow forests along the Alamosa River corridor are vulnerable to wildfire during periods of drought and when the grasses are dormant during spring, fall, and winter. In places the dead-down cottonwood trees are so thick it is difficult to walk through the area. A few structures are scattered throughout this corridor; often nestled tightly amongst the trees. The setting is beautiful, serene and hazardous.

Cleaning up the dead wood around these structures and their driveways will reduce wildfire intensity and provide firefighters with a safer place to make a stand when the inevitable wildfire occurs.

Reducing dead wood loads across the entire river corridor will reduce the chances of a large destructive fire impacting the ecologically valuable cottonwood grooves. The cleanup will have another beneficial effect. It will remove the larger woody debris that tends to be carried away as flotsam during periods of high water, reducing the chances that it will buildup on bridge pilings or diversion structures.

Removing dead/down woody material larger than two inches in diameter will significantly reduce fire and flood hazards. Leaving the smaller woody debris to decompose will continue to add valuable nutrients to the soil.

This stand is in decline and becoming a serious fire hazard.

This stand is robust. Fire will spread rapidly through it but the resistance to control is much lower than the stand above.
Local Preparedness and Protection Capability

NW Conejos County FPD has four fire stations as follows: Main station is located in La Jara with additional stations in Capulin, Carmel, and Romeo. Mutual aid from other Fire Districts such as Alamosa, Rio Grande County and the other Conejos County FPDs is responsive but some times takes considerable time to arrive on scene.

Table 4 Fire Equipment Available and Additional Needs

<table>
<thead>
<tr>
<th>Item</th>
<th>#</th>
<th>Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volunteers</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>Wildland Qualified</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incident Commander Type IV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Division Group Supervisor</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strike Team Leader</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wildland Firefighter</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Brush Truck Type 6</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Engine Fire Pumper Type 1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Water Tender Type 3 (3,000 gal.)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Water Tender Type 3 (1,550 gal.)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Portable Pumps (high pressure)</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Portable Pumps (volume)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Floto Pumps</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Fire Wells</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Fire Tool Cache</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hand Held Radios</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Radio Tower</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Water Supply – The Alamosa River offers very reliable source of water during the summer. There are numerous springs, ponds, and ditches throughout the area. Reaching them to draught water can sometimes be problematic with large fire apparatus. NW Conejos County FPD has four high pressure portable pumps that facilitate filling tankers wherever sufficient water can be found. However, to do this most efficiently four portable volume pumps are needed. During dry spells creeks and irrigation ponds in the area may have reduced flows to the point that they are difficult to draft out of so other sources are needed.
Fire wells are another good option for providing water for wildfire suppression. They are normally wells associated with agricultural activities. Two fire wells have been developed on the NW side of the FPD and at least two more are needed within the FPD. There may be several farmers that would make their wells available for fire suppression purposes.

During the winter the primary water sources are at the fire stations.
COMMUNITY MITIGATION PLAN

The Core Team developed the following mitigation plan based on their knowledge of the wildfire issues in NW Conejos County FPD. The strategy basically addresses public education with some property owner coordination policies.

Essential to the success of the plan is the involvement of the private landowners. Implicit to the plan is “ownership of the fire problem” by private landowners.

Commendations

NW Conejos County FPD has a fairly large and well-organized volunteer fire protection district. They not only provide protection within the NW Conejos County FPD they assist and provide significant fire protection mutual aid to the surrounding fire protection districts in the area.

This Community Wildfire Protection Plan is a step in developing intensive actions to address wildfire hazards identified in the above document.

The surrounding fire protection districts are also completing their community wildfire protection plans and with all of these completed they will help all of the communities and fire protection districts within the San Luis Valley afford mitigation improvements and more effectively provide the fire protection needed.
Wildfire Prevention and Fire Loss Mitigation

Prevention strategies focus on FIREWISE and survivable space education and ditch burning coordination.

Ditch Burning Coordination

There is a need to develop a fair and simple process of coordinating spring ditch burning. The best and most favored approach is for there to be a County policy where property owners call the fire department before igniting a burning project and after controlled burning (particularly ditch burning) is complete. This action would reduce false alarms and also give the property owners daily weather information such as high wind predictions that might warrant burn postponement.

Survivable Space

Survivable space is the key to structure survival. NW Conejos County FPD along with CSFS should initiate an on-going program to encourage individual landowners to redeem their responsibility while living in wildfire prone areas. This includes sharing the information related to “Home Ignition Zone” (see below), advocating FireWise home construction, regular clean up actions such as removing flammable debris from around structures, and mowing vegetation around or near structures.

Home Ignition Zone

A home with its immediate surroundings (about 100-150 feet from the structure) is the home ignition zone.
Recent research into the cause for loss of homes during wildfires indicates that home ignitability, rather than wildland fuels, is the principal cause of home losses during wildland/urban interface fires. Key items are flammable roofing materials (e.g. cedar shingles) and the presence of burnable vegetation (e.g. ornamental trees, shrubs, wood piles, and pine needle accumulation) immediately adjacent to homes (Cohen, 1999).

The home ignition zone includes a home and its immediate surroundings within 100 to 150 feet of the structure. Fuel conditions within this zone, to a large degree, will determine whether a home will survive a wildfire. High intensity fire behavior beyond the home ignition zone does not transfer enough energy directly from its flames to ignite a wooden structure. The fuels surrounding a home within the home ignition zone principally determine the potential for directly igniting the home. Firebrands lofted from extreme wildfires must directly ignite on a structure to be an effective ignition source. If firebrand ignitions occur in the fuels surrounding a home, then those fuels determine the home’s ignition potential. Thus, regardless from how far firebrands travel a home’s exterior materials and design principally and fuels in the home ignition zone determine its ignition potential from firebrands.

The primary and ultimate responsibility for home wildfire protection lies with private homeowners, not public land management agencies (or taxpayers). It is critical that special attention be given to removing fuels in the home ignition zone as well as preparing a defensible space around structures to improve their chances of surviving a wildfire. This includes insuring that there are no combustible materials like concentrations of pine needles, dry grass, hay or straw, firewood, deck furniture, open windows, open vents, household trash, flammable materials such as gasoline, diesel or paint thinners, paper boxes, and fabrics near the structure or in the home ignition zone for fire brands to land on. In the past few years research has found that a significant number of homes destroyed in wildfires burned as the result of the presence of combustible materials within the home improvement zone. Some homes burned as long as 8 hours after the fire front passed.

Fuel Hazard Reduction

There are no specific fuel hazard reduction projects recommended. Development and maintenance of defensible space should be a high priority for rural residents – including the needed spots around the
outside edge of La Jara, Capulin and Romeo. The distance and extent of defensible space for each home site depends on steepness of slope, height and density of vegetation, average worst wind occurrences, and distance from structures.

Improved Protection Capability

Increase forest and wildland training for NW Conejos County FPD VFD particularly for forest fire incidents.

Acquire additional fire protection equipment as listed in Table 4.

Communications

Hand held radios are an important communications tool during wildland fire control activities. Firefighters are often scattered across the fire area and not necessarily in close proximity to their trucks. Communication between personnel on the fireline is critical.

The La Jara FPD has new DTR radios but they do not work well in La Jara or in the mountains near Platoro. These use an 800MHZ frequency and coverage is spotty. NW Conejos County FPD needs a “micro tower” on the La Jara Fire Station and a “portable microwave repeater” that they can carry to a fire and set up to get reliable radio coverage.

County Wildfire Standards for Sub-divisions

NW Conejos County FPD does not yet have any FPD responsibilities in the mountains west of the current western FPD boundary. Unless called on for a specific emergency or for mutual aid with another agency. It is possible that new developments could be proposed in the future that would be petitioned for inclusion within the NW Conejos County FPD. NW Conejos County FPD and all other Conejos County fire protection districts should coordinate to seek County policy requiring a review and sign-off process for certifying proposed subdivisions to assure they include minimum fire protection features within their design.

Many of the basic wildfire hazard issues such as poor access i.e.; one way ingress and egress, steep/narrow road grades, cul-de-sac diameter, vegetative flammability, building construction, roofing materials and survivable space requirements are best addressed at the time a sub-division is being designed and approved.
Colorado counties have a wide variety of wildfire hazard mitigation standards for land development. They range from no mention of wildfire issues to complex standards that stipulate specific criteria for wildfire hazard mitigation, road and driveway design, emergency water supplies, survivable space, and fire resistant structure construction. Generally the more urban forested counties have the strictest fire codes.

The “International Urban-Wildland Interface Code” of 2003 establishes minimum regulations for land use and the built environment in designated urban-wildland interface areas using prescriptive and performance related provisions. It is founded on data collected from tests and fire related incidents, technical reports and mitigation strategies around the world. It is a good reference to work from as NW Conejos County FPD develops its wildfire hazard mitigation standards.

Archuleta County provides a good example for NW Conejos County FPD to emulate. See Appendix H for details.

Conejos County can also take a significant step toward minimizing structure losses from wildfire by stipulating the following improvements in the building permit process:

- At least two ways into and out of the sub-division
- Adequate driveways with turn a rounds suitable for use by fire fighting equipment
- Street signs constructed of non-flammable materials
- Addresses that are posted at the intersection of the main road and the driveway
- Propane tanks that are at least 75 feet from structures
- Fire resistant siding and roofing materials
- Chimneys and stove pipes that have caps and spark arrestors

These few requirements will have substantial impacts on survivable space and first responder efficiency.

Strategic Recommendations

Shared Coordinator

NW Conejos County FPD relies on volunteers to provide all the fire services for a large area. Adding additional work such as FireWise consultations and working with County Commissioners to improve planning, zoning, road and bridge standards will increase the workload for this dedicated but over-committed group.
We recommend funding a part time CWPP project coordinator. This staff would work throughout Conejos County with all FPD and with the Office of Emergency Management to improve policies and regulations related to wildfire hazards in the Land Development Code and provide onsite FireWise consultations to WUI residents.

State Tax Incentives for Wildfire Hazard Mitigation

Conejos County is one of the least affluent counties in Colorado and possibly the nation. Residents are faced with severe economic challenges as they stretch funds to meet basic needs as well as make FIREWISE improvements to their property. Recently the Colorado legislature passed a bill to provide assistance to residents who are willing to take action to mitigate wildfire hazards on their property.

House Bill 1110 created a five year program from 2009 to 2014 that allows landowners to deduct the actual costs of their wildfire mitigation, up to $2,500 from their state income tax. The program allows each landowner to get credit for fifty percent of the cost of wildfire mitigation up to a total of $2,500. To get the full credit the total mitigation costs must be $5,000 or greater. The work must be done in accord with an existing Community Wildfire Protection Plan to qualify.

Colorado State forest Service will be administering the program and verifying the actual work completed. This is a good incentive for individual landowners to improve survivable space around their structures. They can get their personal labor recognized at decent hourly rates.
<table>
<thead>
<tr>
<th>Mitigation Action</th>
<th>Priority</th>
<th>Estimated cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide FireWise Survivable space information to all property owners with structures on their land and new property owners and applicants for building permits.</td>
<td>1</td>
<td>1,000/ yr</td>
</tr>
<tr>
<td>Work with other Conejos County FPDs and County Commissioners to develop a County policy for spring ditch burning coordination. This includes publicizing the policy.</td>
<td>2</td>
<td>2,000</td>
</tr>
<tr>
<td>Work with County Commissioners on wildland fire standards for sub-division developments.</td>
<td>2</td>
<td>8,000</td>
</tr>
<tr>
<td>Purchase 4 portable volume pumps</td>
<td>3</td>
<td>12,000</td>
</tr>
<tr>
<td>Purchase 2 Floto-pumps</td>
<td>4</td>
<td>6,000</td>
</tr>
<tr>
<td>Purchase a micro tower for La Jara Fire Sta. along with portable microwave repeater for use in outlying areas.</td>
<td>5</td>
<td>6,000</td>
</tr>
<tr>
<td>Acquire 4 additional Type 6 Brush Trucks</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>Acquire 4 additional Type 1 Engines</td>
<td>7</td>
<td>*</td>
</tr>
<tr>
<td>Acquire 3 additional Water Tenders</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>Wildland firefighter training for FPD personnel. Get at least ten firefighters qualified as FF2 plus increase qualifications of existing personnel.</td>
<td>9</td>
<td>10,000</td>
</tr>
<tr>
<td>Develop 2 Fire Wells as available from local farmer ranchers</td>
<td>10</td>
<td>3,000</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>$48,000+</td>
</tr>
</tbody>
</table>

Note: Type 1 Engine, fire trucks, and water tenders all can vary across a wide price range depending on specific capabilities or size, whether used or new, or acquired through State process. The total all-together for the five items listed above can vary from $1,000,000 to over $1,500,000.
IMPLEMENTATION & MONITORING

Implementation

The following Table 6: Action Plan for Completing the NW Conejos County FPD CWPP identifies the responsibilities and tasks necessary to accomplish the job at hand. The priorities and responsibilities have been negotiated and agreed to by Core Team and various named individuals.

The Core Team will:

- Seek funds for the purpose of hiring and possibly cost-sharing a coordinator (implementation manager) who, among other things, would do the following:
 - Provide the leadership needed to implement this plan.
 - Establish a wildfire prevention attitude in the community.

Note: In other Counties the coordinator is one of the local fireman who knows the county, is experienced and can work part time; a retired fire manager from a federal or state agency who wants to work part time; or an available school teacher who is trained and familiar with fire protection and suppression policies and procedures.

Since all twelve FPDs in the San Luis Valley have recently completed CWPPs that included the need for part time CWPP project coordinators, there may be an opportunity for fire protection districts to jointly fund and share a position for this purpose.

The CWPP Coordinator’s roles will:

- Strengthen public understanding, acceptance and participation in CWPP operations and improvement projects.
- Ensure follow-up to commitments by the community or within the community and on behalf of the NW Conejos County FPD goals.
- Facilitate Core Team operations. The Coordinator will act in an advisory capacity to represent the community as a whole. This entity would do the following:
 - Set priorities, develop and administer fund raising activities, interact with and coordinate with County, coordinate with State and Federal agencies on behalf of the community as a whole, and ensure follow up on all operations and/or activities.

Monitoring

Monitoring progress is a crucial part of seeing any plan through to completion. Given the values at risk it will be important to assess accomplishments on an annual basis. We expect more homes to become survivable. The Core Team should revisit the CWPP and associated accomplishments every two years and make adjustments to the plan as needed.
<table>
<thead>
<tr>
<th>Mitigation Action</th>
<th>Target Date</th>
<th>Assigned to</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide FireWise/ Survivable space information to all property owners with</td>
<td>May 15, 2009 and ongoing</td>
<td>CWPP Coordinator</td>
<td>✓</td>
</tr>
<tr>
<td>structures on their land, new property owners and applicants for building permits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work with other Conejos County FPDs and County Commissioners to develop a County</td>
<td>March 1, 2009 and ongoing</td>
<td>CWPP Coordinator and Fire Chief</td>
<td>✓</td>
</tr>
<tr>
<td>policy for spring ditch burning coordination. This includes publicizing the policy.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work with County Commissioners on wildland fire standards for sub-division</td>
<td>9/15/2009</td>
<td>CWPP Coordinator</td>
<td>✓</td>
</tr>
<tr>
<td>developments and FPD involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase 2 portable volume pumps</td>
<td>4/2009</td>
<td>Fire Chief</td>
<td>✓</td>
</tr>
<tr>
<td>Purchase 2 Floto-pumps</td>
<td>4/2009</td>
<td>Fire Chief</td>
<td>✓</td>
</tr>
<tr>
<td>Acquire needed fire trucks and water tenders</td>
<td>4/2009 to 6/2012</td>
<td>CWPP Coordinator and Fire Chief</td>
<td>✓</td>
</tr>
<tr>
<td>Purchase a micro tower for La Jara Fire Sta. along with portable microwave</td>
<td>4/2009</td>
<td>Fire Chief</td>
<td>✓</td>
</tr>
<tr>
<td>repeater for use in outlying areas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildland firefighter training for FPD personnel. Get at least ten firefighters</td>
<td>6/2009</td>
<td>Fire Chief</td>
<td>✓</td>
</tr>
<tr>
<td>qualified as FF2 plus increase qualifications of existing personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop 2 Fire Wells as available from local farmer ranchers</td>
<td>ongoing</td>
<td>Fire Chief</td>
<td>✓</td>
</tr>
</tbody>
</table>
APPENDICES

Appendix A: Maps

Appendix B: Fuel Model Descriptions

Appendix C: Fuel Hazard Reduction Guidelines

Appendix D: Evacuation Planning Guidelines

Appendix E: FireWise – A Homeowners Guide to Wildfire Retrofit

Appendix F: Fuelbreak Guidelines for Forested Sub-divisions & Communities

Appendix G: Road & Driveway Specifications for Emergency Access

Appendix H: Planning and Zoning Guide - Archuleta County

Appendix I: NW Conejos County FPD Triage

Appendix J: Sub-division Hazard Evaluation Form

Appendix K: Definition of Terms

Appendix L: References and Publications
APPENDIX A – Maps

WUI Areas

Inside NW Conejos County FPD
- Alamosa River Estates

Outside NW Conejos County FPD
- Blacktail Valley
- La Jara Creek
APPENDIX B – Fuel Model Descriptions

The primary fuels within the Conejos County are forested land, shrub areas and grasslands. The area is dominated by irrigated farmlands or high desert chico on the Valley floor and transitions to pinyon pine forest along the foothills. Ponderosa pine/Douglas-fir/aspen montane forests cover the mid-slope while Engelmann spruce are found at the higher elevations. Ponderosa pine/Douglas-fir forests are generally dense enough to sustain a substantial crown fire resulting in a high fire risk.

Fuel Model 1
Fire spread is governed by the fine, very porous, and continuous herbaceous fuels that have cured or are nearly cured. Fires are surface fires that move rapidly through the cured grass and associated material. Very little shrub and timber is present, generally less than one third of the area.

Fuel Model 101
Is also a grass fuel model but it has much sparser and shorter grass than a typical Fuel Model 1.

Fuel Model 2
Fire spread is primarily through the fine herbaceous fuels, either curing or dead. These are surface fires where the herbaceous material, in addition to litter and open sagebrush contribute to the fire intensity. Open shrub lands that cover one-third to two thirds of the area may generally fit this model; such stands may include clumps of brush that generate higher intensities and that may produce firebrands.

Fuel Model 6
Fire spread is primarily through tall thick sagebrush or thickets of pinon/juniper that ranges in height from 6 to 15 feet. There are occasional pockets of woody debris distributed throughout the unit. Fires require moderate winds, greater than 8 mph at mid flame height. Fire will drop to the ground at low wind speeds, if there is no ground slash, or at openings in the stand.

Fuel Model 8
Slow-burning ground fires with low flame lengths are generally the case, although the fire may encounter an occasional “jackpot” or heavy fuel concentration that can flare up. Only under severe weather conditions involving high temperatures, low humidities, and high winds do the fuels pose fire hazards.

Fuel Model 9
Fires run through the surface litter faster than model 8 and have longer flame height. Concentrations of dead-down woody material will contribute to possible
torch out of trees, spotting and crowning. The pure stands of aspen represent this model. In the fall, after the associated grass and forbs have cured, this fuel will burn more intensely and is temporarily more of a threat.
APPENDIX C – Fuel Hazard Reduction Guidelines

MINIMUM TREE SPACING – RULE OF THUMB

Strive to reduce crown density to 40% or less.

Ponderosa Pine/Douglas Fir: Convert stem diameter from inches to feet and add 7 more feet.

Example: A Ponderosa Pine 8” in diameter at DBH will have a spacing of 8 feet plus 7 feet for a total of 15 feet to the next tree.

Tree spacing does not necessarily need to be even. In fact, the fuel treatment area will look more natural if the spacing varies and small clearings are intermingled with small groups of trees. The important focus should be on breaking up fuel continuity – both horizontally and vertically.

If trees are very tall in relationship to their diameters, implement the thinning work over a long enough time to allow the standing trees to develop their wind firmness and resistance to snow bend. Thinning when trees are small helps reduce prevent these vulnerabilities. Thinning in patches and designing the thinning to minimize wind effect can be done depending on location. All of these can be used but can best be accomplished with the assistance of an experienced forester.

An important part of fuel hazard reduction is removal of the ladder fuels; particularly when adequate thinning cannot be accomplished. Therefore, the following is important to do within a timber canopy.

- Prune trees to 6 or 10 feet above the ground, depending on slope, leaving at least 1/3 live tree crown
- Remove tree reproduction from under the canopies of remaining trees
- Remove sagebrush, oak or any other flammable brush from under the canopies of remaining trees. Reduce the size and height of remaining clumps of brush
- Remove all dead forest debris within defensible space and fuelbreak areas.
- Reduce concentrations of dead forest debris within other areas
- Remove trees recently killed by mountain pine beetle* or other disturbances within defensible space and fuelbreak areas.
✓ Reduce numbers of trees recently killed by mountain pine beetle* or other disturbances in other areas. Only 1 to 3 dead trees per acre are needed for wildlife habitat purposes

*Note: Proper slash disposal procedures should be implemented to avoid attracting Mountain Pine or other bark beetles to the project area.

Bosque Fuel Hazard Reduction

The most complex and expensive fuel treatment involves removing dead/down woody debris from the cottonwood bosque along the Alamosa River. Most of the dead/down woody fuel two inches and larger should be piled and burned or removed from the flood plain. This same material should be removed from a 200 foot zone around all structures.
APPENDIX D – Evacuation Planning Guidelines

Background
The growth of urban development in wildland areas in recent years has resulted in a potentially hazardous situation. People are attracted to forested areas seeking solitude and to escape the pressures of everyday life. Large land holdings have been subdivided into small, affordable acreages for cabin sites or remote homes. The new generation of small lot landowners value individual trees and have often built their cabins under the cover of or within these overstocked forests. Cabins are constructed on prominent points or ridge tops for the view or they are tucked into the forest canopy seeking solitude. In order to minimize the impact of their presence on the land driveways are often narrow with inadequate opportunities to turn around at the building site. At the same time, wildfires have been aggressively suppressed allowing dead fuels to accumulate to alarming levels and young trees to establish in high densities. These ladder fuels provide a “leg up” for a wildfire to burn into the tree crowns and move rapidly under windy conditions. Little attention has been paid by landowners to the potential destructive capacity of an uncontrolled wildfire.

In an emergency wildfire situation that threatens the lives and property of residents in the area, the Fire Protection District, in consultation with the county sheriffs, fire suppression teams and land managing agencies, may recommend that residents evacuate to a safe area. Prior evacuation planning is essential to implement this action effectively.

By definition, evacuation is a protective action—moving people from a place of danger to a place of relative safety. It is a temporary mass movement of people that collectively emerges in coping with threats to area residents and visitors.

An Evacuation Plan will facilitate the orderly evacuation during an emergency wildfire situation. Step by step actions provide critical information and guidance for fire suppression and law enforcement personnel during an emergency situation. Each subdivision, home site development area or land owner association should be strongly encouraged to develop an evacuation plan for their area that identifies potential evacuation routes and critical information (locked gates, inadequate bridges, etc) for a variety of wildfire threat scenarios.

Critical Contacts
Conejos County Sheriff 719-376-6778
Conejos County Emergency Manager 719-588-5801
Colorado State Patrol 719-589-5807
Colorado State Forest Service 719-587-0915
Colorado Division of Wildlife 719-587-9600
Rio Grande National Forest, Conejos Pk Ranger District 719-274-8971
Pueblo Interagency Fire Center/Fire Dispatch Center 719-553-1600
719-553-1613

Federal Emergency Management Agency 303-235-4900
Local News Media KSLV Radio 719-852-3581
KGIW Radio 719-589-6644
KRZA Radio 719-589-8844
Check List When Potential for Evacuation Exists

1) Close back country roads and trails at trail heads
2) Post on bulletin boards information regarding fire danger
3) Set up a local Information Center where residents and visitors can access up-to-date information and status regarding wildfires that pose a threat to the area
4) Provide routine updates on wildfire conditions for local radio and television stations as the threat increases
5) When the fire suppression team and land managing agencies (US Forest Service and Colorado State Forest Service) believe evacuation may become necessary, notify the County Sheriff and County Emergency Manager
6) Fire suppression team and land managing agency managers should meet and coordinate with the Sheriff and County Emergency Manager to decide if an evacuation is necessary. The decision to evacuate should be made and implemented well before the evacuation needs to be complete. Local conditions and the fire’s rate of advance will dictate timing and trigger points
7) The Sheriff, after consultation with the land managing agencies and County Emergency Manager makes the decision to evacuate the threatened area and implements the actual evacuation
8) Notify residents and visitors of the Order to Evacuate
 - Siren to alert visitors in the back country
 - Law enforcement patrol vehicles with public address systems announce evacuation order
 - House-to-house verification that threatened home site developments are completely evacuated
 - Law enforcement vehicles and ATVs drive back country roads and trails to assure evacuation
 - Use one color flagging to mark secondary roads/trails at their junction with the primary road (evacuation route) when notification is in progress then change to another color when verification is complete on that road/trail.
9) Drive evacuation routes installing free standing traffic control signs at key road intersections and opening locked gates or cutting fences to allow exit.
10) CSFS notify Federal Emergency Management Agency (FEMA)
11) Notify Colorado State Patrol Assign law enforcement to direct traffic at critical road junctions

The officer in charge of the evacuation will make the decision regarding which evacuation route to use at the time. Depending on the situation the decision may be to use any or all of the routes to evacuate the threatened area.
Emergency Evacuation Routes

Primary emergency evacuation routes are suggested but should be validated with landowners and land management agencies involved prior to the onset of an emergency need for evacuation. These primary evacuation routes should provide multiple opportunities for evacuating traffic to exit the area. Hazardous fuel concentrations should be treated along primary evacuation routes by creating shaded fuelbreaks to reduce canopy cover to 40 percent or less and treat slash and combustible debris within 200 to 300 feet of either side of the road. Tributary roads should be identified in local developments and treated similarly to facilitate a safe and orderly evacuation.

<table>
<thead>
<tr>
<th>Community</th>
<th>Ways In & Out</th>
<th>Road Identifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alamosa River</td>
<td>4</td>
<td>County Roads going east and west</td>
</tr>
<tr>
<td>La Jara Creek Acres</td>
<td>2</td>
<td>County road east or west</td>
</tr>
</tbody>
</table>

Estimated Time to Implement an Evacuation

The decision to evacuate a threatened area must be made well in advance of the time the fire is expected to threaten residents, visitors and facilities.

Fire Behavior and Evacuation Timing

Spread Component (SC) is the key fire danger component to monitor. The spread component is a numerical value derived from a mathematical model that integrates the effects of wind and slope with fuel bed and fuel particle properties to compute the forward rate of spread at the head of the fire. Output is in units of feet per minute. A spread Component of 31 indicates a worst-case, forward rate of spread of approximately 31 feet per minute.

The inputs required in to calculate the SC are wind, slope, fine fuel moisture (including the effects of green herbaceous plants), and the moisture content of the foliage and twigs of living, woody plants.

Since characteristics through which the fire is burning are so basic in determining the forward rate of spread of the fire front, a unique SC table is required for each fuel type.

When considering spotting, the rich diversity of fuel types scattered throughout the County, and the likelihood of wind, it may be prudent, when fire danger is Very High, to consider starting an evacuation process when fires are burning within 10 miles of down-wind subdivisions or home site development areas (urban interface area). Knowing the SC for the most prevalent fuel type between where the fire is and where the home site developments are can best refine this judgment call. With a SC of 44 a fire will cover 2 miles or more within 4 hours. If the SC is 22 the fire will cover at least one mile within 4 hours and 2 miles within 8 hours. If the SC is 11 the fire will cover two miles within 16 hours. If the SC is 5 the fire can cover two miles within 32 hours.

Remember the lessons of some Colorado fires:
- The Buffalo Creek Fire ran nearly eleven miles in 4.5 hours
- The Hayman Fire ran at least 16 miles in one afternoon

Timing
Evacuation planning needs to take into account how long it will take to notify residents that an evacuation is necessary, how long it will take for them to get ready and start driving out of the area and then how long it takes to actually drive to a safe area. This determination should be made locally for each development area or subdivision and then validated before it is used during an emergency.

Every situation will be different but it is reasonable to estimate the minimum time required to be no less than 4 hours to complete the process. As much as three hours may be required to notify residents and visitors and get them started moving and another hour to get everyone out of the area. Residents and visitors closest to the advancing threat should be notified first. Once they are driving out of the area it will take them up to an hour in most cases to exit the area if traffic is flowing at a rate of 10 to 20 miles per hour.

Driving time should be measured on each of the potential evacuation routes by driving at a conservative speed depending on road conditions and how many people are expected to be evacuated to approximate how long it would take to drive the route during an evacuation providing traffic was moving at about that rate. The following table displays the type of information that needs to be incorporated in the Evacuation Plan.

Travel Time for Evacuation Routes

<table>
<thead>
<tr>
<th>Beginning Point</th>
<th>Ending Point</th>
<th>Time Required</th>
<th>Miles Traveled</th>
<th>Average Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPS Locations for Critical Features and Facilities – This table provides GPS coordinate locations for critical points referred to.

<table>
<thead>
<tr>
<th>Feature</th>
<th>GPS Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4
Recommendations

- Negotiate agreements with neighboring private land owners and land managing agencies to allow evacuation across their property on their roads and through their locked gates.
- Negotiate an agreement to thin fuels along the evacuation route between the subdivision or home development area and safe areas.
- Upgrade roads on evacuation routes by widening curves, providing water bars to prevent erosion and thinning fuels along these emergency exits.
- Construct and store freestanding “Fire Exit Directional Signs” or “Evacuation Route” for use in marking evacuation routes.
- Develop a specific evacuation procedure and assign responsibilities to County staff.
Is Your Home Protected From Wildfire Disaster?

A Homeowner’s Guide to Wildfire Retrofit
acknowledgments

The staff of the Institute for Business & Home Safety (IBHS) wishes to acknowledge the valuable input of all those involved in the preparation of this booklet. In particular, we extend our thanks to:

The IBHS Wildfire Committee Members
National Fire Protection Association
State Farm Fire and Casualty Company
National Institute of Standards & Technology
US Geological Survey
Insurance Services Office, Inc.
The Hartford Financial Services Group
California FAIR Plan Association
Allstate Insurance Company

Architectural Illustrations:
W. Spaulding, AIA

Photography:
Cover: Incident scenes, post-burn/damages
 Courtesy National Interagency Fire Center, Boise, Idaho
Cover and page 1: Bitterroot National Forest, Montana
 Courtesy National Interagency Fire Center, Boise, Idaho
Cover and page 2: Pine Barrens
 © J Smalley, NJ
Opposite Table of Contents: Florida Wildfire
 © AP Wide World Photos

Disclaimer

The purpose of this document is to provide homeowners with guidance on ways to retrofit and build homes to reduce losses from wildfire damage. It contains suggestions and recommendations based on professional judgment, experience and research and is intended to serve only as a guide. The authors, contributors and publisher disclaim all warranties and guarantees with respect to the information in the document and assume no liability or responsibility with respect to the information.
“Nature...she pardons no mistakes.”

Ralph Waldo Emerson

In 1993, a wildfire in a dry canyon north of Laguna Beach, California, raced toward hundreds of nearby homes, giving residents little advance warning of its awesome destruction. More than 14,000 acres and 440 homes went up in flames. In the nearby Mystic Hills neighborhood, 286 homes were totally destroyed. Yet, there was one white house left standing in the midst of hundreds of piles of smoking ash that remained of its neighboring homes. This sole surviving house was built with fire prevention in mind. It stood as an example of how homes can, with a little extra attention, better withstand nature’s perils. The practical methods used in and around that house can help reduce the chances of future wildfires from reducing communities to ashes. This guide is designed to make that one rare exception of survival a more common occurrence in the future.
Introduction

Wildfires and Your Home

- The Wildland/Urban Interface Problem
- You and Your Local Fire Department
- Just the Right Conditions
- How Your Home Catches Fire
- Taking Inventory - Is your property at risk?
- What’s Your Risk Level?
- What You Can Do to Reduce Your Risk

Your Home’s Landscape

- Creating a Survivable Space
- The Importance of Maintenance

Your Home’s Building Materials and Design

- The Ideal Fire-Resistant Home
- Taking Inventory
- Taking Action

Helping Your Local Fire Department

Wildfire Safety Project List

Wildfire Protection Checklist

References

Additional Sources of Information
Large Fire Locations
January 1 to October 3, 2000

Legend
- Currently Active Fires
- Contained Fires
- Human-caused
- Lightning-caused

Courtesy National Interagency Fire Center
Boise, Idaho
Introduction

Nearly every state has been devastated by wildfires in the last century. More than 140,000 wildfires occur on average each year. Since 1990, more than 900 homes have been destroyed each year by wildfires.

So, what can you do to protect yourself, your home and property from wildfires? This guide will help you understand

• why your home is at risk, and
• how you can reduce the risk to your home and property.
The Wildland/Urban Interface Problem

Wildfires occur regularly. Whether started by humans or by lightning, they are part of a natural cycle that helps to maintain the health of our forests. Today, more than ever, people are moving into remote areas, with the desire to “get back to nature,” without addressing the dangers that exist around them.

A tremendous wildfire danger exists where homes blend together with the wildland, creating the wildland/urban interface. The addition of homes there interrupts the natural cycle of wildfires. Ultimately, this contributes to a dangerous build-up of old vegetation, leading to an uncontrollable wildfire.

You and Your Local Fire Department

In a wildfire, your local fire department has two priorities – to remove you and your family from harm’s way and to stop the progression of the wildfire. If your home happens to be in the wildfire’s path, they may or may not be able to protect it – there are simply no guarantees.

Consequently, you must take action before a fire starts.
Conditions must be just right for a wildfire to start and spread. Specifically, fuel, weather and topography work together to determine how quickly a wildfire travels and at what intensity.

Fuels: The two basic fuel types in the wildland/urban interface are vegetation and structures.

Vegetation: Fuel in its natural form consists of living and dead trees, bushes and grasses. Typically, grasses burn more quickly and with less intensity than trees. Any branches or shrubs between 18 inches and 6 feet are considered to be ladder fuels. Ladder fuels help convert a ground fire to a crown fire (tree tops) which moves much more quickly.

Structural Density: The closer the homes are together, the easier it is for the flames to spread from one structure to another.

Weather: High temperatures, low humidity, and swift winds increase the probability of ignitions and difficulty of control. Short and long-term drought further exacerbates the problem.

Slope: Slope is the upward or downward incline or slant of terrain. For example, a completely flat plain represents a 0% slope and a hillside that rises 30 feet for every 100 feet horizontal distance represents a 30% slope.

Hot gases rise in front of the fire along the slope face, pre-heating the up-slope vegetation, moving a grass fire up to four times faster with flames twice as long as a fire on level ground.
How Your Home Catches Fire

There are three ways that the wildfire can transfer itself from the natural vegetation or other burning homes to your home – through radiation, convection or firebrands.

Radiation: Wildfires can spread to your home by radiating heat in the same way a radiator heats your rooms in the wintertime. Radiated heat is capable of igniting combustible materials from distances of 100 feet or more.

Convection: Contact with the convection column (flames) may also cause the wildfire to ignite your house. Typically, the convective heat column rises vertically, within the smoke plume.

Firebrands: Firebrands are burning materials that detach from a fire during strong convection drafts in the burning zone. Firebrands can be carried long distances – more than a mile – by the winds associated with the wildfire.

In all cases, your home’s building materials and design play a significant role in establishing the level of exposure that can be endured before ignition from radiation, convection, firebrands or any combination of these three.

Taking Inventory – Is Your Property at Risk?

The first step in establishing your risk is to assess your property. The table on page 5 lists numerous factors and issues that you should consider.

This assessment will give you a good sense of your property’s wildfire risk.
What's Your Risk Level?

The rough categories that follow on page 6 are not meant to give you an absolute score, but are to help guide you when deciding how to best protect your home.

What You Can Do To Reduce Your Risk

Homes in a wildland/urban interface area can be designed and maintained to increase the chances of surviving a wildfire without the intervention of the fire department.
<table>
<thead>
<tr>
<th>Low Risk Areas:</th>
<th>Moderate Risk Areas:</th>
<th>High Risk Areas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little or no history of nearby</td>
<td>History of wildfires</td>
<td>History of nearby wildfires</td>
</tr>
<tr>
<td>wildfires</td>
<td>Climate includes a dry season less than 3 months</td>
<td>Dry climate with a dry season more than 3</td>
</tr>
<tr>
<td>Humid climate, short dry season</td>
<td>Hilly terrain (grades average between 10% and 20%)</td>
<td>months</td>
</tr>
<tr>
<td>Flat terrain (no grades greater</td>
<td>Bordering a wildland with light brush, small trees or</td>
<td>Steep terrain (grades average over 20%)</td>
</tr>
<tr>
<td>than 9%)</td>
<td>grass</td>
<td>Forested wildland within 100 feet of your</td>
</tr>
<tr>
<td>Limited wildland</td>
<td>Trees are located in close proximity to your home</td>
<td>home</td>
</tr>
<tr>
<td>Home not crowded by trees</td>
<td></td>
<td>Native vegetation has or has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not been incorporated into your landscape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manmade fuels are within 50 feet of your</td>
</tr>
<tr>
<td></td>
<td></td>
<td>home</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire hydrant within 500 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Access for fire trucks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Native vegetation has not been incorporated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>into your landscape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trees are crowded within 30 feet of your</td>
</tr>
<tr>
<td></td>
<td></td>
<td>home</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manmade fuels within 30 feet of your home</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No fire hydrants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited access for fire trucks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating a Survivable Space For Your Home

A survivable space is an area of reduced fuels between your home and the untouched wildland. This provides enough distance between the home and a wildfire to ensure that the home can survive without extensive effort from either you or the fire department.

One of the easiest ways to establish a survivable space is to use the zone concept. Zone 1 is the closest to your home and Zones 2 and 3 move progressively further away.

Zone 1: Establish a well-irrigated area around your home. In a low hazard area, it should extend a minimum of 30 feet from your home on all sides. As your hazard risk increases, a clearance of between 50 and 100 feet or more may be necessary, especially on any downhill sides of the lot. Plantings should be limited to carefully spaced indigenous species.

Zone 2: Place low-growing plants, shrubs and carefully spaced trees in this area. Maintain a reduced amount of vegetation. Your irrigation system should also extend into this area. Trees should be at least 10 feet apart, and all dead or dying limbs should be trimmed. For trees taller than 18 feet, prune lower branches within six feet of the ground. No tree limbs should come within 10 feet of your home.

Zone 3: This furthest zone from your home is a slightly modified natural area. Thin selected trees and remove highly flammable vegetation such as dead or dying trees and shrubs.

So how far should Zones 2 and 3 extend? Well, that depends upon your risk and your property's boundaries.

In a low hazard area, these two zones should extend another 20 feet or so beyond the 30 feet in Zone 1. This creates a modified landscape of over 50 feet total.

In a moderate hazard area, these two zones should extend at least another 50 feet beyond the 50 feet in Zone 1. This would create a modified landscape of over 100 feet total.

In a high hazard area, these two zones should extend at least another 100 feet beyond the 100 feet in Zone 1. This would create a modified landscape of over 200 feet total.

The Importance of Maintenance

Once you have created your home's survivable space, you must maintain it or risk losing the benefit of its protection.
A Homeowner’s Guide to Wildfire Retrofit

Creating and maintaining a survivable space is a necessary first step. The next step is to use fire resistant building materials and construction techniques in retrofitting your home.

The Ideal Fire-Resistant Home

Keep in mind that a wildfire sees your home as just another fuel source. The survivable space you construct around your home will keep all but the most ferocious wildfires at bay. However, if the wildfire does break through your first line of defense, an ignition might occur on your home’s exterior. The ideal situation is for your home’s exterior materials to prevent or retard the flames from burning into your interior walls, soffits, attic area, and rooms.

Taking Inventory

Examine your home’s construction and materials. Use the following as a checklist.

☐ What type of roof covering do you have? Asphalt, wood, concrete, tile or metal?

☐ How are your eaves, fascias and soffits constructed? Are they made from vinyl, wood or metal?

☐ What are your home’s exterior walls covered with? Are they wood, aluminum or vinyl siding, stucco, brick or concrete masonry?

☐ Do you have large windows or sliding glass doors that border or face the wildland? Are they single pane, double pane or tempered glass?

☐ How are your home’s attic and sub-floor vents protected? Are their covers metal or vinyl?

☐ Are spark arresters installed on all your home’s chimneys?

☐ Does your home have a deck or balcony that overhangs a slope?

☐ Is there a porch, garage or wood fence that attaches directly to your home?
Taking Action

Now you will need to decide on the best modifications for your home, given your risk.

Roof: The roof is the most vulnerable part of your home to wildfires. During a wildfire, firebrands can fall on your roof, landing in your roof's nooks and crannies where a fire can easily start. Once your roof covering does ignite, chances are very good that the rest of your home will follow.

The best way to avoid this situation is to make sure your roof is fire-resistant. The two main fire resistance tests used today include: ASTM E108 and UL 790. There are three levels of classification awarded under the test protocol, A, B, and C, with A being the most fire resistant. Some treated wood shake shingle products have ratings of Class C or better. Over time, the effectiveness of this chemical is reduced by weathering before the end of the product's useful life and may leave your roof unprotected.

If your roof needs to be re-covered, consider installing a Class A roof covering.

Exterior Walls: Exterior walls are susceptible to a wildfire's radiant and convective heat. Although a fire on an exterior wall may not penetrate inside your home, the fire can 'bridge' to more vulnerable areas such as eaves, soffits, vents and windows.

Wall materials that resist heat and flames include cement, plaster, stucco and concrete masonry such as stone, brick or block. Though some materials will not burn, such as vinyl, they may lose their integrity when exposed to high temperature and fall away or melt, providing the fire with a direct path inside the home.
Exterior Windows, Glass Doors and Skylights: Exposure to the heat of the wildfire can cause glass to fracture and collapse, leaving an opening for flames and firebrands to enter your home. This applies to both double pane and single pane glass, since double pane glass is only slightly more resistant to heat than single pane glass.

On the other hand, single or double pane tempered glass windows, doors and skylights typically fracture at higher exposures, well above the radiant heat exposures capable of igniting the surrounding wood.

Eaves, Fascias, Soffits: Eaves, fascias and soffits are vulnerable to both firebrands and convective exposures.

Eaves, fascias and soffits should be ‘boxed’ or enclosed with noncombustible materials to reduce the size of the vents. Materials that melt or burn in relatively low temperatures, such as PVC and vinyl siding, should not be used, since they do not provide adequate protection and can melt in the heat of the wildfire. Non-combustible screening should be used in the vents.

Attic, Subfloor or Foundation Vents: Wind and/or direct contact with a fire’s convective heat can push firebrands through the vents into your home’s basement or crawl space.

Your vent openings should be screened to prevent firebrands or other objects larger than 1/4 inch from entering your home. Both your vents and screens should be constructed of materials that will not burn or melt when exposed to radiant or convective heat or firebrands. Also, these vents should be corrosion-resistant to help minimize required maintenance.
Fireplace Chimneys: Windblown embers can access your home through your fireplace's chimney flue. Once inside, these firebrands then collect on flammable objects, greatly increasing the chance of combustion. The situation can also be reversed: embers from your own fire can fly out the chimney and start a wildfire, right in your own neighborhood.

The best way to avoid this situation is to install a spark arrestor made from welded wire or woven wire mesh with openings less than 1/4" wide.

Overhangs and Other Attachments: Overhangs and other attachments include any additional structures attached to a residence such as room pushouts, bay windows, decks, porches, carports and fences. These features are often very vulnerable to convective exposures.

When assessing your home and property, if the feature in question is attached to your home, it should be considered part of your home.

There are a number of ways you can reduce the vulnerability of your home's overhangs and attachments. First and foremost, remove all fuels around these areas. Next, box in the undersides of the overhangs, decks and balconies with noncombustible or fire-resistant materials to reduce the possibility of ignition. For fences, make sure that they don't attach directly to your home.
Even if you modify your home's landscape to incorporate the most fire-resistant materials and design into your home's construction, there is no guarantee that a wildfire will not threaten your home. It is important that your local fire department be able to find and defend your home.

Here are some suggestions on how to modify your property to accommodate your local fire department.

Street Signs and Numbers: If made from combustible materials, your street signs and numbers can ignite or melt, leaving the fire department with no ability to locate your home. It is critical that signs and numbers be noncombustible and visible from the road.

Driveways: Fire trucks and equipment are quite large and often have difficulty in tight spots. Consequently, your home's driveway must be large enough to accommodate the typical sized trucks. Fire experts recommend a driveway at least 12 feet wide and 13 feet of vertical clearance.

Gates: If your home is gated, it is very important that the gate opens inward and be wide enough to accommodate the fire fighting equipment. Experts also recommend that the gate be at least 30 feet off of the main road, so that the equipment can pull off the road to open the gate. If the gate is locked, the lock should not be so strong that firefighters cannot break it in an emergency.
wildfire safety project list

This list of home improvements is divided into cost categories. You can tackle these projects one at a time, but remember, the more you do, the better protected your home will be against wildfires.

Category $ ($<300)

- Creating a survivable space;
- Maintaining your survivable space;
- Installing fire-resistant signs and address numbers;
- Modifying your attic, sub-floor, and basement vents;
- Installing a spark arrestor on your chimney.

Category $$ ($300 – $1000)

- Boxing in overhangs and modifying other attachments;
- Boxing in your eaves, facias, and soffits.

Category $$$ ($>1000)

- Re-covering your exterior walls with a more fire-resistant material;
- Replacing single-pane glass windows, doors, or skylights with tempered glass;
- Modifying your driveway, bridges, and gates to accommodate fire trucks;
- Re-roofing your home with a Class A roof covering.
WILDFIRE PROTECTION CHECKLIST

Before, During and After: Be Completely Prepared

You will give yourself and your family a better chance of escaping harm during a wildfire by taking as many of the precautions outlined in this brochure as possible. But, these steps are only the beginning. To protect yourself as completely as possible, here are some added suggestions:

before a wildfire strikes:

- Know where your gas, electric and water main shut-off controls are and how to turn them off if there is a leak or electrical short. Also, know how to use a fire extinguisher. Make sure all adult and teenage members of your family know how to shut off each utility and to use the extinguisher.

- Become familiar with your community's disaster-preparedness plans and create a family plan. Know where the closest police, fire and emergency medical facilities are located.

- Plan several different escape routes from your home and neighborhood and designate an emergency meeting place for the family to reunite. Establish a contact point to communicate with concerned relatives.

- Put together an emergency kit that includes at least a three-day supply of drinking water and food that needs no refrigeration and, generally, no cooking; emergency cooking equipment, if required; a portable NOAA weather radio; first aid supplies and medications; basic tools, such as a wrench, a flashlight and gloves; portable lanterns and batteries; credit cards and cash; and important documents, including insurance policies.

- Talk to your neighbors about wildfire safety. Plan how the neighborhood could work together before, during and after a wildfire. Make a list of your neighbors' skills such as medical or technical. Consider how you would help neighbors who have special needs such as elderly or disabled persons. Make plans to take care of children who may be on their own if parents can't get home.

- Periodically review your homeowner's insurance policy with your insurance agent or company to make sure that, if you are the victim of a disaster, you have enough coverage to rebuild your home and life.
If you are warned that a wildfire is threatening your area, listen to your portable radio for reports and evacuation information. Follow the instructions of local officials.

Back your car into the garage or park it in an open space facing the direction of escape. Shut car doors and roll up windows. Leave the key in the ignition or in another easily accessible location.

Close garage windows and doors, but leave them unlocked. Disconnect automatic garage door openers.

Confine pets to one room. Make plans to care for your pets in case you must evacuate.

Arrange temporary housing outside the threatened area.

When advised to evacuate, do so immediately.

Wear protective clothing – sturdy shoes, cotton or woolen clothing, long pants, a long-sleeved shirt, gloves and a handkerchief to protect your face.

Take your emergency kit.

Lock your home.

Notify your relatives and the local officials that you have left and where you can be reached.

Follow the evacuation route that your local officials have identified. If no official route exists, choose a route away from fire hazards. Watch for changes in the speed and direction of the fire and smoke.

during a wildfire:
If you are SURE you have the time, take additional steps to protect your home:

- Close windows, vents, doors, venetian blinds and heavy drapes. Remove lightweight curtains.
- Shut off gas at the meter. Turn off pilot lights.
- Move flammable furniture into the center of the home away from windows and sliding-glass doors.
- Turn on a light in each room to increase the visibility of your home in heavy smoke.
- Seal attic and ground vents.
- Turn off propane tanks.
- Place combustible patio furniture inside.
- Connect the garden hose to outsides taps.
- Place lawn sprinklers on the roof and near aboveground fuel tanks. Wet the roof.
- Wet or remove shrubs within 15 feet of the home.
- Gather fire tools, including a rake, axe, hand/chainsaw, bucket and shovel.
after a wildfire strikes:

- ✔ Listen to and follow the advice and recommendations of the local aid organizations, including the emergency management office, the fire department and the utility companies.

- ✔ Check for hazards, such as gas or water leaks and electrical shorts. Turn off damaged utilities. Have the fire department or gas and electric companies turn the utilities back on when the area is secured.

- ✔ Check for injuries and administer first aid as needed.

- ✔ Check your food and water supplies. Do not eat anything from open containers near shattered glass.

- Protecting Your Home from Wildfire. Quincy, MA: NFPA, 1987

appendix I: additional sources of information

California Department of Forestry and Fire Protection (CDF)
http://www.fire.ca.gov/

Colorado State University/Colorado Forestry Service
http://lamar.colostate.edu/~firewise/

Firewise
http://www.firewise.org/

National Interagency Fire Center (NIFC)
http://www.nifc.gov/

U.S. Forest Service
http://www.fs.fed.us/fire/

Wildfire News
http://www.wildfirenews.com/
Fuelbreak Guidelines for
Forested Subdivisions & Communities

By

Frank C. Dennis

Colorado State Forest Service
Knowledge to Go Places
This publication was developed for use by foresters, planners, developers, homeowners’ associations and others. Implementation of these measures cannot guarantee safety from all wildfires, but will greatly increase the probability of containing them at more manageable levels.

Colorado’s forested lands are experiencing severe impacts from continuing population increases and peoples’ desire to escape urban pressures. Subdivisions and developments are opening new areas for homesite construction at an alarming rate, especially along the Front Range and around recreational areas such as Dillon, Vail, and Steamboat Springs.

But with development inevitably comes a higher risk of wildfire as well as an ever-increasing potential for loss of life and property. Methods of fire suppression, pre-suppression needs, and homeowner and fire crew safety must all be considered in the planning and review of new developments as well as for the “retrofitting” of existing, older subdivisions.

Fuelbreaks should be considered in fire management planning for subdivisions and developments; however, the following are guidelines only. They should be customized to local areas by professional foresters experienced in Rocky Mountain wildfire behavior and suppression tactics.

Fuelbreak vs Firebreak

Although the term fuelbreak is widely used in Colorado, it is often confused with firebreak. The two are entirely separate, and aesthetically different, forms of forest fuel modification and treatment.

- A firebreak is strip of land, 20 to 30 feet wide (or more), in which all vegetation is removed down to bare, mineral soil each year prior to fire season.

- A fuelbreak (or shaded fuelbreak) is an easily accessible strip of land of varying width (depending on fuel and terrain), in which fuel density is reduced, thus improving fire control opportunities. The stand is thinned, and remaining trees are pruned to remove ladder fuels. Brush, heavy ground fuels, snags, and dead trees are disposed of and an open, park-like appearance is established.

The following is a discussion of the uses, limitations, and specifications of fuelbreaks in wildfire control and fuels management.

Fuelbreak Limitations

Fuelbreaks provide quick access for wildfire suppression. Control activities can be conducted more safely due to low fuel volumes. Strategically located, they break up large, continuous tracts of dense timber, thus limiting uncontrolled spread of wildfire.

Fuelbreaks can aid firefighters greatly by slowing fire spread under normal burning conditions. However, under extreme conditions, even the best fuelbreaks stand little chance of arresting a large...
fire, regardless of firefighting efforts. Such fires, in a phenomenon called “spotting,” can drop firebrands 1/8-mile or more ahead of the main fire, causing very rapid fire spread. These types of large fires may continue until there is a major change in weather conditions, topography, or fuel type.

It is critical to understand: A fuelbreak is the line of defense. The area (including any homes and developments) between it and the fire may remain vulnerable.

In spite of these somewhat gloomy limitations, fuelbreaks have proven themselves effective in Colorado. During the 1980 Crystal Lakes Subdivision Fire near Fort Collins, crown fires were stopped in areas with fuelbreak thinnings, while other areas of dense lodgepole pine burned completely. A fire at O’Fallon Park in Jefferson County was successfully stopped and controlled at a fuelbreak. The Buffalo Creek Fire in Jefferson County (1996) and the High Meadow Fire in Park and Jefferson Counties (2000) slowed dramatically wherever intense forest thinnings had been completed. During the 2002 Hayman Fire, Denver Water’s entire complex of offices, shops and caretakers’ homes at Cheesman Reservoir were saved by a fuelbreak with no firefighting intervention by a fuelbreak.

The Need For A Fuelbreak
Several factors determine the need for fuelbreaks in forested subdivisions, including: (1) potential problem indicators; (2) wildfire hazard areas; (3) slope; (4) topography; (5) crowning potential; and (6) ignition sources.

Potential Problem Indicator
The table below explains potential problem indicators for various hazards and characteristics common to Colorado’s forest types. All major forest types, except aspen, indicate a high potential for wildfire hazard.

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Characteristics</th>
<th>Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aesthetics</td>
<td>Wildlife</td>
</tr>
<tr>
<td>Aspen</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Greasewood-Saltbrush</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Limber-Bristlecone Pine</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lodgepole Pine</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Meadow</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Mixed Conifer</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mountain Grassland</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Mountain Shrub</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Piñon-Juniper</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ponderosa Pine</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sagebrush</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Spruce-Fir</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Legend: 5 – Problem may be crucial; 4 – Problem very likely; 3 – Exercise caution; 2 – Problem usually limited; 1 – No rating possible
Wildfire Hazard Maps
The Colorado State Forest Service (CSFS), numerous counties and some National Forests have completed wildfire hazard mapping for many areas within Colorado, particularly along the Front Range. These maps typically consider areas with 30 percent or greater slope; hazardous fuel types; and hazardous topographic features such as fire chimneys. Wildfire Hazard Ratings may be depicted in several ways. Whatever system is used, areas rated moderate or higher should be considered for fuel modification work.

Slope
Rate of fire spread increases as the slope of the land increases. Fuels are preheated by the rising smoke column or they may even come into contact with the flames themselves.

At 30 percent slope, rate of fire spread doubles compared to rates at level ground, drastically reducing firefighting effectiveness. Areas near 30 percent or greater slopes are critical and must be reviewed carefully.

Topography
Certain topographic features influence fire spread and should be evaluated. Included are fire chimneys, saddles, and V-shaped canyons. They are usually recognized by reviewing standard U.S.G.S. quad maps.

- Chimneys are densely vegetated drainages on slopes greater than 30 percent. Wind, as well as air pre-heated by a fire, tends to funnel up these drainages, rapidly spreading fire upslope.

- Saddles are low points along a main ridge or between two high points. Like chimneys, they also funnel winds to create a natural fire path during a fire’s uphill run. Saddles act as corridors to spread fire into adjacent valleys or drainages.

- Narrow, V-shaped valleys or canyons can ignite easily due to heat radiating from one side to the other. For example, a fire burning on one side of a narrow valley dries and preheats fuels on the opposite side until the fire “flashes over.” The natural effect of slope on fire then takes over and fire spreads rapidly up drainage and uphill along both sides of the valley.
Crowning Potential
An on-site visit is required to accurately assess crowning potential. A key, below, helps determine this rating. Fuel modification is usually unnecessary if an area has a rating of 3 or less.

Crowning Potential Key

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Foliage present, trees living or dead — B</td>
</tr>
<tr>
<td>B.</td>
<td>Foliage living — C</td>
</tr>
<tr>
<td>C.</td>
<td>Leaves deciduous or, if evergreen, usually soft, pliant, and moist; never oily, waxy, or resinous. 0</td>
</tr>
<tr>
<td>CC.</td>
<td>Leaves evergreen, not as above — D</td>
</tr>
<tr>
<td>D.</td>
<td>Foliage resinous, waxy, or oily — E</td>
</tr>
<tr>
<td>E.</td>
<td>Foliage dense — F</td>
</tr>
<tr>
<td>F.</td>
<td>Ladder fuels plentiful — G</td>
</tr>
<tr>
<td>G.</td>
<td>Crown closure > 75 percent</td>
</tr>
<tr>
<td>GG.</td>
<td>Crown closure < 75 percent</td>
</tr>
<tr>
<td>FF.</td>
<td>Ladder fuels sparse or absent — H</td>
</tr>
<tr>
<td>H.</td>
<td>Crown closure > 75 percent</td>
</tr>
<tr>
<td>HH.</td>
<td>Crown closure < 75 percent</td>
</tr>
<tr>
<td>EE.</td>
<td>Foliage open — I</td>
</tr>
<tr>
<td>I.</td>
<td>Ladder fuel plentiful</td>
</tr>
<tr>
<td>II.</td>
<td>Ladder fuel sparse or absent —</td>
</tr>
<tr>
<td>DD.</td>
<td>Foliage not resinous, waxy, or oily — J</td>
</tr>
<tr>
<td>J.</td>
<td>Foliage dense — K</td>
</tr>
<tr>
<td>K.</td>
<td>Ladder fuels plentiful — L</td>
</tr>
<tr>
<td>L.</td>
<td>Crown closure > 75 percent</td>
</tr>
<tr>
<td>LL.</td>
<td>Crown closure < 75 percent</td>
</tr>
<tr>
<td>KK.</td>
<td>Ladder fuels sparse or absent — M</td>
</tr>
<tr>
<td>M.</td>
<td>Crown closure > 75 percent</td>
</tr>
<tr>
<td>MM.</td>
<td>Crown closure < 75 percent</td>
</tr>
<tr>
<td>JJ.</td>
<td>Foliage open — N</td>
</tr>
<tr>
<td>N.</td>
<td>Ladder fuels plentiful</td>
</tr>
<tr>
<td>NN.</td>
<td>Ladder fuels sparse or absent —</td>
</tr>
<tr>
<td>BB.</td>
<td>Foliage dead</td>
</tr>
</tbody>
</table>

The majority of dead trees within the fuelbreak should be removed. Occasionally, large, dead trees (14 inches or larger in diameter at 4 1/2 feet above ground level) may be retained as wildlife trees. If retained, all ladder fuels must be cleared from around the tree’s trunk.

Ignition Sources
Possible ignition sources, which may threaten planned or existing developments, must be investigated thoroughly. Included are other developments and homes, major roads, recreation sites, railroads, and other possible sources. These might be distant from the proposed development, yet still able to channel fire into the area due to slope, continuous fuels, or other topographic features.

Fuelbreak Locations
In fire suppression, an effective fire line is connected, or “anchored,” to natural or artificial fire barriers. Such anchor points might be rivers, creeks, large rock outcrops, wet meadows, or a less flammable timber type such as aspen. Similarly, properly designed and constructed fuelbreaks take advantage of these same barriers to eliminate “fuel bridges.” (Fire often escapes control because of fuel bridges that carry the fire across control lines.)

Since fuelbreaks should normally provide quick, safer access to defensive positions, they are necessarily linked with road systems. Connected with county-specified roads within subdivisions, they provide good access and defensive positions for firefighting equipment and support vehicles. Cut-and fill slopes of roads are an integral part of a fuelbreak as they add to the effective width of modified fuels.

Fuelbreaks without an associated road system, such as those located along strategic ridge lines, are still useful in fire suppression. Here, they are often strengthened and held using aerial retardant drops until fire crews can walk in or be ferried in by helicopter.

Preferably, fuelbreaks are located along ridge tops to help arrest fires at the end of their runs. However, due to homesite locations and resource values, they can also be effective when established at the base of slopes. Mid-slope fuelbreaks are least desirable, but under certain circumstances and with modifications, these too, may be valuable.

Fuelbreaks are located so that the area under management is broken into small, manageable units. Thus, when a wildfire reaches modified fuels, defensive action is more easily taken, helping to keep the fire small. For example, a plan for a subdivision might recommend that fuelbreaks break up continuous forest fuels into units of 10 acres or less. This is an excellent plan, especially if defensible space thinnings are completed around homes and structures, and thinning for forest management and forest health are combined with the fuelbreak.

When located along ridge tops, continuous length as well as width are critical elements. Extensive long-range planning is essential in positioning these types of fuelbreaks.
Aesthetics
Improperly planned fuelbreaks can adversely impact an area’s aesthetic qualities. Careful construction is necessary when combining mid-slope fuelbreaks with roads involving excessive cut-and-fill.

These photos, far- and near-views of the same site, illustrate that forest can be thinned without impacting aesthetics.

Care must also be taken in areas that are not thinned throughout for fuel hazard reduction. In such cases the fuelbreak visually sticks out like a “sore thumb” due to contrasting thinned and unthinned portions of the forest. (Especially noticeable are those portions of the fuelbreak above road cuts).

These guidelines are designed to minimize aesthetic impacts. However, some situations may require extensive thinning and, thus, result in a major visual change to an area. Additional thinning beyond the fuelbreak may be necessary to create an irregular edge and to “feather,” or blend, the fuelbreak thinning into the unthinned portions of the forest. Any thinning beyond the fuelbreak improves its effectiveness and is highly recommended.

Constructing the Fuelbreak
Fuelbreak Width and Slope Adjustments
Note: Since road systems are so important to fuelbreak construction, the following measurements are from the toe of the fill for downslope distances, and above the edge of the cut for uphill distances.

The minimum recommended fuelbreak width is approximately 300 feet for level ground. Since fire activity intensifies as slope increases, the overall fuelbreak width must also increase. However, to minimize aesthetic impacts and to maximize fire crew safety, the majority of the increases should be made at the bottom of the fuelbreak, below the road cut.

Widths are also increased when severe topographic conditions are encountered. Guidelines for fuelbreak widths on slopes are given below:

These photos, far- and near-views of the same site, illustrate that forest can be thinned without impacting aesthetics.

Cross-section of a typical fuelbreak built in conjunction with a road.

<table>
<thead>
<tr>
<th>Percent Slope (%)</th>
<th>Minimum Uphill Distance (ft)</th>
<th>Minimum Downhill Distance (ft)</th>
<th>Total Width of Modified Fuels (ft)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>165</td>
<td>303</td>
</tr>
<tr>
<td>20</td>
<td>130</td>
<td>180</td>
<td>310</td>
</tr>
<tr>
<td>30</td>
<td>120</td>
<td>195</td>
<td>315</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>210</td>
<td>320</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>225</td>
<td>325</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>240</td>
<td>340</td>
</tr>
</tbody>
</table>

*As slope increases, total distance for cut-and-fill for road construction rapidly increases, improving fuelbreak effective width.
Stand Densities
Crown separation is a more critical factor for fuelbreaks than a fixed tree density level. A minimum 10-foot spacing between the edges of tree crowns is recommended on level ground. As slope increases, crown spacing should also increase. However, small,isolated groups of trees may be retained for visual diversity. Increase crown spacing around any groups of trees left for aesthetic reasons and to reduce fire intensities and torching potential.

In technical terms, a fuelbreak thinning is classified as a heavy “sanitation and improvement cut, from below.” Within fuelbreaks, trees that are suppressed, diseased, deformed, damaged, or of low vigor are removed along with all ladder fuels. Remaining trees are the largest, healthiest, most wind-firm trees from the dominant and co-dominant species of the stand.

Because such a thinning is quite heavy for an initial entry into a stand, prevailing winds, eddy effects, and wind funneling must be carefully evaluated to minimize the possibility of windthrow. It may be necessary to develop the fuelbreak over several years to allow the timber stand to “firm-up” — this especially applies to lodgepole pine and Engelmann spruce stands.

Area-wide forest thinning are recommended for any subdivisions. Such thinning is not as severe as a fuelbreak thinning, but generally should be completed to fuelbreak specifications along the roads (as outlined on page 6.) In addition, “defensible space thinning” are highly recommended around all structures (see CSU Coop. Extension Fact sheet 6.302, Creating Wildfire-Defensible Zones).

Debris Removal
Limbs and branches left from thinning (slash) can add significant volumes of fuel to the forest floor, especially in lodgepole pine, mixed-conifer, or spruce/fir timber types. These materials can accumulate and serve as ladder fuels, or can become “jackpots,” increasing the difficulty of defending the fuelbreak during a wildfire. Slash decomposes very slowly in Colorado and proper disposal is essential. Proper treatment reduces fire hazard, improves access for humans and livestock, encourages establishment of grasses and other vegetation, and improves aesthetics.

Three treatment methods are commonly used. These are lopping-and-scattering, piling and burning, and chipping. Mulching of small trees and slash using equipment similar to Hydro-axes or Timbco equipped with mulching heads are becoming a popular method of treatment. Size, amount, and location of slash dictates the method used, in addition to cost and the final desired appearance. The method chosen will also depend on how soon an effective fuelbreak is needed prior to construction in new developments.

Debris Removal

Limbs and branches left from thinning (slash) can add significant volumes of fuel to the forest floor, especially in lodgepole pine, mixed-conifer, or spruce/fir timber types. These materials can accumulate and serve as ladder fuels, or can become “jackpots,” increasing the difficulty of defending the fuelbreak during a wildfire. Slash decomposes very slowly in Colorado and proper disposal is essential. Proper treatment reduces fire hazard, improves access for humans and livestock, encourages establishment of grasses and other vegetation, and improves aesthetics.

Three treatment methods are commonly used. These are lopping-and-scattering, piling and burning, and chipping. Mulching of small trees and slash using equipment similar to Hydro-axes or Timbco equipped with mulching heads are becoming a popular method of treatment. Size, amount, and location of slash dictates the method used, in addition to cost and the final desired appearance. The method chosen will also depend on how soon an effective fuelbreak is needed prior to construction in new developments.
Fuelbreak maintenance problems are most often the result of time and neglect. Misplaced records, lack of follow-up and funding, and apathy caused by a lack of fire events are some of the major obstacles. In addition, the responsibility for fuelbreak maintenance projects is often unclear. For example, control of a fuelbreak completed by a developer passes to a homeowner’s association, usually with limited funds and authority to maintain fuelbreaks.

If fuelbreak maintenance is not planned and completed as scheduled, consider carefully whether the fuelbreak should be constructed. An un-maintained fuelbreak may lead to a false sense of security among residents and fire suppression personnel.

Conclusion

An image of well-designed communities for Colorado includes:

- Forested subdivisions where the total forest cover is well-managed through carefully planned, designed, and maintained thinnings. This contributes to reduced wildfire hazards and a much healthier forest — one that is more resistant to insects and disease.

- A system of roads and driveways with their associated fuelbreaks that break up the continuity of the forest cover and fuels. These help keep fires small, while also providing safer locations from which to mount fire suppression activities. In addition to allowing fire personnel in, they will allow residents to evacuate if necessary.

- Individual homes that all have defensible space around them, making them much easier to defend and protect from wildfire, while also protecting the surrounding forest from structure fires.

Creation of such communities is entirely feasible if recognition of the fire risks, a spirit of cooperation, an attitude of shared responsibility, and the political will exists.

Colorado’s mountains comprise diverse slopes, fuel types, aspects, and topographic features. This variety makes it impossible to develop general fuelbreak prescriptions for all locations. The previous recommendations are guidelines only. A professional forester with fire suppression expertise should be consulted to “customize” fuelbreaks for particular areas.
APPENDIX G: Road and Driveway Drawings and Specifications for Emergency Vehicle Access - Conejos County, Colorado

Roads serving one dwelling unit shall meet the following:

A. Roadway shall be a total of 14’ in width, including a 10’ all-weather travel surface and 2’ shoulders (each side). Curves and turn a rounds should have a minimum of a 30’ radius at centerline.

B. Road grade should generally not be over 7 percent. A maximum grade 10 percent to 12 percent grade would be acceptable for short distances not over 150 feet.

C. If the driveway is less than 50’ the above (A and B) do not apply.

D. If the length of the road exceeds 150’, a turnaround shall meet (template 1 or 2) standards.

Roads serving more than one dwelling shall meet the following:

A. Roadway shall be a total of 20’ in width, including a 16’ all weather travel surface and 2’ shoulders (template 3) to 16 units, or a total width of 14’, including a 10’ travel surface, with 2’ shoulders on either side and pullouts at 150’ intervals in accordance with (template 4).

B. A total roadway width of 24’, including an 18’ paved surface and 3’ shoulders in accordance with (template 3) for roads serving 16 or more dwellings, or one or more non-residential units.

C. Grades shall be the same as for one dwelling roads/driveway identified above.

D. If the length of the driveway is less than 50’ then A and B above does not apply.

E. If the length exceeds 150’, a turnaround shall be provided in accordance with (template 1 or 2).

Driveway approaches and private road intersections with public roads shall meet the following:

A. Driveway approaches and private road intersections with public roads must comply with (template 5).
TEMPLATE 1 Culdesac - Conejos County, Colorado
TEMPLATE 2 Hammerhead Turnaround - Conejos County, Colorado
TEMPLATE 3 Private Road - Conejos County, Colorado
TEMPLATE 4 Pull Out for Private Road - Conejos County, Colorado
TEMPLATE 5 Driveway Approaches for Roads - Conejos County, Colorado
Appendix H: Planning and Zoning Guide- Archuleta County

Archuleta County provides a good example for Conejos County to emulate. The following information, extracted from Archuleta County’s Planning and Zoning guide and their Road and Bridge Standards, is suggested as a starting point for consideration:

5.2.2.4 Wildfire Hazard Areas:
 The County shall not approve any development if the proposed project is located in an identified wildfire hazard area, or is suspected by the County to be in a wildfire hazard area, unless the developer can submit adequate evidence, prepared by a qualified professional forester, that the proposed project meets the following criteria:

 5.2.2.4.1 Any project in which residential activity is to take place shall be designed to minimize significant hazards to public health and safety or to property.

 5.2.2.4.2 All projects shall have adequate roads for emergency service by fire trucks, fire fighting personnel, and firebreaks or other means of mitigating conditions conducive to fire.

 5.2.2.4.3 Precautions required to reduce or eliminate wildfire hazards shall be provided for at the time of initial development.

 5.2.2.4.4 The project will adhere to the Guidelines and Criteria for Wildfire Hazard Areas promulgated by the Colorado State Forest Service.

 5.2.2.4.5 Consideration shall be given to the recommendations of the Colorado State Forest Service, resulting from review of a proposed project in a wildfire hazard area.

5.3.9 Fire Protection System:
 If the project is within an existing fire protection district, written confirmation is required that current fire code requirements have been met. If outside a fire protection district a fire protection plan shall be reviewed by the Saguache County Sheriff, Fire Chief of the appropriate Fire Protection District or other qualified individual. The County shall not approve any project without implementation of an adequate fire protection plan.

Archuleta County Road and Bridge Standards that relate specifically to emergency vehicle access include maximum grades by road type and the following wording scattered throughout the document:

 Where cul-de-sac road are approved turnouts shall be provided. Bulb type turnarounds shall have a minimum road surface of 90 feet in diameter and
minimum right-of-way of 110 feet in diameter. An alternative to the bulb type turnaround is the use of hammerhead turnaround.

The maximum length of roads ending in turnarounds shall be 600 feet in areas with a high wildfire hazard and 1,000 feet in all other areas. When a variance from this standard is requested at least one of the following shall be provided:

a. central water service,
b. an alternative water supply acceptable to the local fire authority,
c. monitored residential sprinklers in all residences on the cul-de-sac.

In addition, turnouts may be required when a variance is requested.

Driveway Widths: The dimensions of driveway widths and centerline curve radii shall be as shown in Table 27-12.

Single family residence driveways in excess of 400 feet in length shall provide an adequate turnaround for emergency equipment within 150 feet of the dwelling unit. Driveways serving multi family, industrial or commercial development shall provide a turnaround as specified in Figure 27-7 if the driveway has a dead end.
APPENDIX I – Conejos County Triage
STRUCTURE TRIAGE

Triage is the determination of priorities for action during an emergency. This describes a concise decision making process that will be used if/when a wildfire threatens multiple structures simultaneously within Conejos County. It will be done rapidly and on the move.

Structure:
- Roof Type?
- Debris on Roof?
- Propane Tank?
- Siding?
- Fire Brand Traps?
- Flammable Clutter?

Defensible Space:
- Is There Any?
- Water Supply?
- Adjacent Fuel Type?
- Access?

Current & Expected Fire Behavior?

Available Firefighting Resources?

Firefighter Safety:
- Escape Routes?
- Safety Zones?

Quickly determine the status of each threatened structure and make decisions!

Clearly communicate the priorities and firefighter evacuation criteria!

Be ready to live with your decisions, they will be second guessed after the threat is over.

Your first priority is to live to fight fire another day!!
SUBDIVISION FIRE HAZARD RATING

**NAME__________________________________ DATE____________________
SIZE (acres)_____________________________ # LOTS or HOMES______________
RATING____________________ COMMENTS_______________________________

A. Home Site Development Area Design

1. **Ingress/Egress**
 - Two of more primary roads ___
 - One road ___
 - One-way in, one-way out ___

2. **Width of primary road**
 - 20 feet or more ___
 - 20 feet or less ___

3. **Accessibility**
 - Road grade 5% or less ___
 - Road grade 5% or more ___

4. **Secondary road terminus:**
 - Loop roads, cul-de-sacs with outside turning radius of 45 feet or greater. ___
 - Cul-de-sac turn-around radius less than 45 feet. ___
 - Dead-end roads 200 feet or less in length ___
 - Dead-end roads greater than 300 feet in length ___

5. **Average lot size:**
 - 10 acres or larger ___
 - Larger than 1 acre, but less than 10 acres. ___
 - 1 acre or less ___

6. **Street Signs:**
 - Present ___
 - Not Present ___

B. Defensibility

1. **Fuel Load Between Home Sites:**
 - Light ___
 - Medium ___
 - Heavy ___

2. **Defensible Space for Individual Homes:**
 - 70% or more of sites ___
 - 30% or more of sites ___
 - Less than 30% of sites ___

C. Home Ignition Zone

Thorough Litter and Debris Clean Up:
- 70% or more of sites ___
- 30% to 69% of sites ___
- 10% to 29% of sites ___
- 0% to 9% of sites ___

D. Roofing Materials (prevalent within area)

- Class A rated (metal) ___
- Class B rated (composition) ___
- Class C rated (wood) ___
- Non-rated (pine needles & debris) ___

E. Fire Protection - Water Source

- 500 GPM hydrant within 1000 ft. ___
- Hydrant farther than 1000 ft or draft site. ___
- Water source 20 minutes or less (round trip) ___
- Water source farther than 20 minutes, and 45 minutes or less round trip. ___
- Water source farther than 45 minutes round trip ___

F. Existing Building Construction Material (most common within subdivision)

- Noncombustible siding/decks ___
- Noncombustible siding with combustible decks ___
- Combustible siding and decks ___

G. Utilities (gas and/or electric) (most common within subdivision)

- All underground utilities ___
- One underground, one above ground ___
- All above ground ___

Total For Area

Rating Scale:
- **Moderate Hazard** 40 - 54
- **High Hazard** 55 - 74
- **Extreme Hazard** 75+
APPENDIX K – Definition of Terms

Appropriate Management Response (AMR) - Specific actions taken in response to a wildland fire to implement protection and fire use objectives identified by appropriate government agency. AMR allows for a full range of strategies to be applied, from an intense full suppression response to wildland fire use. The first response decision to be made is whether to have a suppression oriented response or to allow the fire to burn for predetermined benefits.

Confinement Response - The suppression-orientated strategy employed in appropriate management response where a fire perimeter is managed by a combination of direct and indirect actions and use of natural topographic features, fuels, and weather factors. These strategies and tactics could include perimeter control.

Defensible Space - Area around a structure where fuels and vegetation are treated, cleared or reduced to slow the spread of wildfire towards the structure. It also reduces the chance of a structure fire moving from the building to surrounding forest. Defensible space provides room for firefighters to do their jobs.

Disturbance - A discrete event, either natural or human induced, that causes a change in the existing condition of an ecological system.

Energy Release Component (ERC) - An index developed through the National Fire Danger Rating System. ERC then is an indicator of dryness in the fuel, is a fuel loading based rate that predicts how much energy fire will produce both from its consumption of available fuel and through its residence time. ERC, and 1000 hour time lag fuel moisture has been used in dry climates to track seasonal drying trends.

Escape Fire Situation Analysis (EFSA) - If a wildfire has escaped initial attack EFSA is the process the agency administrator or acting uses to determine the best suppression strategy for achieving appropriate suppression that best meets resource objectives.

Fire Management Plan (FMP) - A strategic plan that defines a program to manage wildland and prescribed fires. The plan could be supplemented by operational plans, prescribed fire plans, hazardous fuels reduction, and prevention plans.

Fire Use - The combination of wildland fire use and prescribed fire application to meet specific resource and landowner objectives.

Fuel Treatment - Programmed and contracted to reduce or change fuel loading or type on a site. Can be accomplished by mechanical, chemical or fire use.

Full Response - A suppression response action that can include: control lines surrounding the entire perimeter, (hot spot and cold trail may be considered completed line) including any spot fires, protection of interior islands, burn-out of fuels adjacent to control lines and mop-up to a standard adequate to hold under high fire intensity conditions. Full response objectives are based on safe yet aggressive approach to achieve containment of the fire by the beginning of the next burn period. Fire behavior may dictate, at least temporarily, the utilization of natural barriers or indirect strategies. These strategies and tactics would include direct control.

Haines Index - Lower atmosphere stability index (LASI) developed by Donald Haines. The index relies on two variables: dryness and stability/instability. On a scale of six, three points are given to dryness and three to the stability or instability of the atmosphere. Both these variables have a pronounced affect on extreme fire behavior. In the scaling, a 6 is extreme, 5 are high, 4 are moderate, while 3 to 1 are low.

Initial Attack - An aggressive suppression action consistent with firefighter and public safety and values to be protected.
Initial Management Area (IMA) - The size of an IMA may be adjusted based on fire behavior predictions, weather forecasts, site analysis and risk assessment. The IMA becomes fixed as an MMA once a wildland fire is placed under a stage III implementation plan.

Insurance Services Office (ISO) Rating - An overall fire services rating developed for use in determining insurance premiums for residential and commercial property. Factors such as fire alarm systems, equipment, training, availability of water (hydrants), etc. are used to develop the rating. The rating is on a scale of class 1 to class 10, with 1 providing the best public protection and 10 providing the lowest public protection. See www.iso.com for more details.

Maximum Management Area (MMA) - The firm limits of management capability to accommodate the social, political, and resource impacts of a wildland fire. Once an approved Wildland Fire Use plan is established the MMA is fixed and not subject to change. If MMA determination is exceeded, the fire will follow the Wildland Fire Situation Analysis (WFSA) process.

Mitigation Actions - Those on-the-ground activities that will serve to increase the defensibility of the Maximum Manageable Area (MMA); check, direct, or delay the spread of fire, and minimize threats to life, property, and resources. Mitigation actions may include mechanical and physical non-fire tasks, specific fire applications, and limited suppression actions. These actions will be used to construct fire lines, reduce excessive fuel concentrations, reduce vertical fuel, and create black lines.

POL – Stands for “Products Other than Logs” thinning to harvest poles and posts and firewood.

Polygon - A planning sub-unit within a fire planning area that represents similar resource values and landowners objectives, fuel conditions with associated fire behavior, Social/Political concerns and economic considerations. Polygons are categorized as A, B, C, and D areas.

Preparedness - Activities that lead to a safe, efficient, and cost-effective fire management program in support of land and owners management objectives through appropriate planning and coordination.

Prescribed Fire - Any fire ignited by management actions to meet specific objectives. A written, approved prescribed fire plan must exist prior to ignition.

Prescribed Fire Plan - A plan required for each fire application ignited by management. It must be prepared by qualified personnel and approved by the appropriate agency administrator prior to implementation. Each plan will follow specific direction and must include critical elements and how to mitigate each element.

Prescription Guidelines - guidelines used to show upper and lower reaches of a prescription.

Spread Component (SC) - An index developed through the National Fire Danger Rating System. The index provides predicted rate of spread of a fire (in chains per hour) from inputted information on the fuel complex and weather information collected from a local Remote Automated Weather System (RAWS) site.

Suppression Constraints - A limitation placed on suppression forces to minimize adverse affects to the environment due to fire suppression activities. An example would be restricting the use of heavy equipment in certain areas.

Suppression Oriented Response - A range of responses to a wildland fire, which range from full response to confinement of the fire. It may also include periodically checking fire status and fire behavior.

TSI – Stands for “Timber Stand Improvement” thinning to stimulate growth and improve residual tree health

Wildfire - An unwanted wildland fire.
Wildland Fire - Any nonstructural fire, other than prescribed fire, that occurs in the wildland. This term encompasses fires previously called both wildfires and prescribed natural fires.

Wildland Fire Implementation Plan (WFIP) - A progressively developed assessment and operational management plan that documents the analysis and selection of strategies and describes the appropriate management response for a wildland fire being managed for resource benefit.

Wildland Fire Situation Analysis (WFSA) - A decision-making process that evaluates alternative management strategies against selected safety, environmental, social, economic, political, and resource management objectives.

Wildland Urban Interface (WUI) - It can be simply described as the geographical area where structures and other human development meet or intermingle with wildland or vegetative fuels. For the purposes of community wildfire protection planning a more specific definition is used. The Healthy Forest Restoration Act defines wildland-urban interface as:
1. an area extending ½ mile from the boundary of an at risk community.
2. an area within 1.5 miles of the boundary of an at risk community, including any land that:
 1. has a sustained steep slope that creates the potential for wildfire behavior endangering the at risk community,
 2. has a geographic feature that aids in creating an effective fire break, such as a road or ridge top,
 c. an area that is adjacent to an evacuation route for an at risk community that requires hazardous fuels reduction to provide safer evacuation from the at risk community.
APPENDIX L – References and Publications

Publications

- Forest Home Fire Safety, no 6.304, F.C. Dennis, CSU Cooperative Extension, 5/1999
- Grass Seed Mixes to Reduce Wildfire Hazards, no 6.306, F.C. Dennis, CSU Cooperative Extension, 10/2003
- Soil Erosion Control After Wildfire, no 6.308, R. Moench &
J. Fusaro, CSU Cooperative Extension, 10/2003
• Insects and Diseases Associated with Forest Fires, no 6.309,
 D. Leatherman, CSU Cooperative Extension, 12/2002
• Fuelbreak Guidelines for Forested Subdivisions, F. C. Dennis, CSFS/CSU, 2005